Estimating the parameters of forest inventory using machine learning and the reduction of remote sensing features

نویسندگان

  • Tanel Tamm
  • Kalle Remm
چکیده

Locally computed statistics of image texture and a case-based reasoning (CBR) systemwere evaluated for mapping of forest attributes. Cluster analysis was preferred to regression models, as a pre-selection method of features. The best stand-based accuracy using satellite sensor images was 74.64 m 3 ha 1 (36%) RMSE for stand volume, 1.98 m 3 ha 1 a 1 (49%) for annual increase in stand volume, where k = 0.23 for stand growth classes and k = 0.41 for dominant tree species in stands. The top pixel-based accuracy using orthophotos was 76.54 m 3 ha 1 (41%) RMSE for stand volume, 1.87 m 3 ha 1 a 1 (44%) for annual increase in stand volume, where k = 0.24 for stand growth classes and k = 0.38 for dominant tree species in stands. Mean saturation in 30 m radius was the most useful feature when orthophotos were used, and standard deviation of Landsat ETM 6.2 values in 80 m radius was the best when satellite sensor images were used. The most valuable feature components (radii, channels and local statistics) for orthophotos were: 30 m kernel radius, lightness and the mean of pixel values; for satellite sensor images: 80 m kernel radius, near-infrared channel (ETM 4) and the mean of pixel values. Locally computed statistics. 2009 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of remote sensing indicators in drought monitoring using machine learning algorithms (Case study: Marivan city)

Remote sensing indices are used to analyze the Spatio-temporal distribution of drought conditions and to identify the severity of drought. This study, using various drought indices generated from Madis and TRMM satellite data extracted from Google Earth Engine (GEE) platform. Drought conditions in Marivan city from February to November for the years 2001 to 2017 were analyzed based on spatial a...

متن کامل

Investigation of the Forest and Pasture Cover Changes in Arasbaran Ecosystem during 34 years, Using Remote Sensing Technique

Estimating the extent of changes in forest and rangelands land cover, leads to a clear understanding of the growth or decline of these natural areas and planning for effective protection of these national assets. The aim of current study was to reveal the trend of land-use changes in the Dizmar protected area of Arasbaran vegetative area, using MSS sensor of Landsat-5 for 1984, ETM+ sensor of L...

متن کامل

Air temperature estimation based on environmental parameters using remote sensing data

 This study is aimed at estimating monthly mean air temperature (Ta) using the MODIS Land Surface Temperature (LST), Normalized Difference Vegetation Index (NDVI), latitude, altitude, slope gradient and land use data during 2001-2015. The results showed that despite some spatial similarities between annual spatial patterns of Ta and LST, their variations are significantly different, so that the...

متن کامل

Assessment of land use changes using remote sensing and GIS and their implications on climatic variability for Balachaur watershed in Punjab, India

Abstract Decadal changes in land use/land cover for Balachaur watershed in Nawanshahar district, Punjab, India were studied using black and white aerial photographs for March 1984 on approximately 1:20,000 scale and multidate geocoded false colour composites (FCC) of IRS-1D LISS-III on 1:50,000 scale for March 2002, September 2002, and May 2003 and interpreted visually to prepare land use/land...

متن کامل

Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods

Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...

متن کامل

The Possibility of Created the Vegetation Cover Maps in the Central Zagros Forest by Using the IRS Satellite Image

The preparation of vegetation cover maps by used the land inventory and a traditional method has a lot of cost and time. But today, remote sensing is one of the main sources of data collection and information production for study and monitoring land resources, and was efficient tools for providing quickly and timely data and information needs for program planning in the natural resource filed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Applied Earth Observation and Geoinformation

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2009